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Abstract. This paper describes code SHARM-3D developed for fast and accurate simulations of the 
monochromatic radiance at the top of the atmosphere over spatially variable surfaces with Lambertian 
or anisotropic reflectance. The atmosphere is assumed to be laterally uniform across the image, and 
consisting of two layers with aerosols contained in the bottom layer. SHARM-3D performs 
simultaneous calculations for all specified incidence-view geometries and multiple wavelengths in 
one run. The numerical efficiency of the current version of code is close to its potential limit. This is 
achieved via two innovations. The first one is development of a comprehensive pre-computed look-up 
table of the 3D atmospheric optical transfer function for different atmospheric conditions. The second 
one is the use of a linear kernel model of the land surface bi-directional reflectance factor (BRF) in 
our algorithm that led to a fully parameterized solution in terms of the surface BRF parameters. The 
code is also able to model inland lakes and rivers. The water pixels are described with the Nakajima 
and Tanaka BRF model of wind-roughened water surface with the Lambertian offset. The latter is 
designed to approximately model reflectance of suspended matter or from the shallow bottom. 
 

1. Introduction 
The cloud-free atmospheric conditions play an important role in the spaceborne remote 

sensing of atmospheric aerosol and surface reflectance. Far from localized sources, aerosols vary on a 
much coarser scale than the surface reflectance. A recent analysis of mesoscale aerosol variability1 
gave the estimate of 20-60 km. Within such distances, the aerosol amount in atmospheric column and 
its radiative properties can often be considered approximately uniform, and all of the spatial and 
angular variability of the measured signal can be attributed to the variable surface reflectance. To 
model radiative transfer for this practically important case, we developed a Green’s function (GF) 
method2 that treats variability of the surface bi-directional reflectance factor (BRF), and includes 3D 
horizontal radiative transport caused by the surface inhomogeneity. The GF method rigorously 
decouples atmospheric transfer of radiation and the interactions of sunlight with the surface. It offers 
particular advantages when the atmosphere is laterally homogeneous, because solution for the 
atmospheric radiative transfer needs to be obtained only once for the whole area of interest. In the 
earlier work3, we also parameterized the multiple reflections of photons from inhomogeneous surface. 
Implemented in code SHARM-3D, these features advanced the speed of calculations by a factor of 
∼103 as compared to code SHDOM4, at the similar accuracy3. 

These improvements clarified further opportunities for the optimization. For example, the 
angular integration was originally performed for every surface pixel with its BRF in order to find the 
surface-reflected radiance, and to propagate it to the top of the atmosphere (TOA). Also, the 3D 
optical transfer function (OTF) had to be calculated each time the atmospheric conditions change, and 
these 3D computations were the lengthiest part of the total solution. These issues have been addressed 
in our recent research. As a result, we developed a comprehensive pre-calculated look-up table and a 
fast algorithm to reconstruct OTF for different atmospheric conditions. In addition, we implemented a 
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Li Sparse - Ross Thick5 (LSRT) linear kernel model of the surface BRF in our algorithm that led to a 
fully parameterized solution in terms of the surface BRF parameters. This BRF model has been the 
basis of operational MODIS surface BRF/albedo algorithm6, and it has shown very good performance 
globally in fitting the angular reflectance of natural land surfaces. Due to the linearity of this model, 
the requirement for the angular integration for every pixel is now reduced to only two integrations 
with predefined kernel functions, independently of the size of image. These two innovations raised 
the speed of calculations to its practical limit, and brought about by far the most efficient algorithm of 
the satellite image generation. The goal of this paper is to describe the new parameterizations, and to 
discuss performance of the latest version of code SHARM-3D, which can be downloaded from 
ftp://ltpftp.gsfc.nasa.gov/projects/asrvn/. 

 
2. Parameterized SHARM-3D solution 
 
2.1 Expression for the TOA Radiance 

In the 3D Green’s function solution2, the top of the atmosphere (TOA) radiance at a given 
wavelength is expressed as a sum of path radiance (D) and surface-reflected radiance (Ls), directly 
and diffusely transmitted through the atmosphere. The diffusely transmitted signal is additionally split 
into the spatially averaged component and variation: 
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Here, r=(x,y) is a horizontal coordinate, rs is a coordinate shift at the TOA for oblique view angles; τ 
is the optical thickness, and incidence (s0) and view (s) directions are described by pairs of zenith and 
azimuthal angles (θ, ϕ). The surface-reflected radiance is expressed as: 
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where πSλ is extraterrestrial solar spectral irradiance, sD  is the surface-incident path radiance, ρ is the 
surface BRF, and 
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α is a multiple reflection factor, 1
00 ))(1( −−= cq µα  depending on the mean surface albedo ( q ) and 

spherical albedo of the atmosphere (c0). The diffusely transmitted mean surface-reflected radiance at 
the TOA is calculated from Ls with the help of 1D diffuse Green’s function of the atmosphere7: 
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In the literature, function πGd is often called bi-directional upward diffuse transmittance of the 
atmosphere. The surface albedo is defined as a ratio of reflected and incident surface fluxes: 
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Finally, the diffusely transmitted variation of surface-reflected radiance is given by: 
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Here, )()( 000 µµπ DownFE =  is surface irradiance, )(~ pq  is a Fourier-transform of albedo variation at 
spatial frequency p=(px,py), A  and Φ are the amplitude and phase of the atmospheric optical transfer 
function (OTFL), and c(p) is spherical albedo of atmosphere at spatial frequency p. The details of 
derivation and notations are fully explained elsewhere2,7. 

The described formulas employ several parameterizations. For example, the multiple 
reflections between the atmosphere and anisotropically reflecting surface are parameterized in Eq. (2). 
Eq. (6) uses a Lambertian approximation, and neglects the non-linear interactions of variation of 
surface reflectance. These parameterizations immensely simplify the radiative transfer algorithm and 
gain a speed advantage of up to a factor of 103 as compared to SHDOM, yet retain the high accuracy,4 
which is generally better than 1%. 
 
2. Parameterized Solution with LSRT BRF Model 
 
 In 1992, Roujean et al.8 introduced a concept of linear kernel-based BRF model. One model of 
this family is a semi-empirical LSRT model5 represented as a sum of Lambertian, geometric-optical, 
and volume scattering components:     
 ),(),(),( ssfkssfkkss vvgogoL ′+′+=′ρ . (7) 
It uses predefined “kernels” gof , vf  to describe different angular shapes. The kernels are independent 
of the land conditions.  The BRF of a pixel is characterized by a combination of three kernel weights, 

T
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r
. The processing of MODIS6 and MISR9 global satellite data shows that LSRT 

model fits well the diversity of natural BRF shapes. This model is widely used in the applied research.  
Use of LSRT model offers an immediate advantage of parameterizing our analytical solution 

into a weakly non-linear function of spatially variable kernel weights with angular-dependent 
coefficients that need to be calculated only once for the whole image. Because the following 
formulation uses azimuthal harmonics, let us first define an azimuthal Fourier expansion: 
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Below, the subscript k will refer to either geometric-optical (go) or volumetric (v) kernels. Let us now 
introduce a set of the required integral functions: 
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Based on these definitions, the functions 1ρ , 2ρ  (Eq. (3)) become: 
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The surface albedo splits into the direct and diffuse components according to the source of irradiance: 
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The surface-reflected radiance ),;( 0 ssrLs  is expressed via functions: 
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The mean diffusely transmitted radiance ),( 0 ssLd

s  depends on the following functions: 
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With the introduced functions, the surface-reflected radiance at the bottom of atmosphere and the 
mean surface signal diffusely transmitted at TOA in Eq. (1) can be written as follows: 
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The described algorithm (Eqs. 1, 12) uses two different solutions of code SHARM. The first 
one is a standard solution with the atmosphere illuminated at the top. It provides the path radiance at 
TOA along with its azimuthal harmonics at the bottom of the atmosphere, surface irradiance, 
atmospheric transmittance and spherical albedo. In the second solution, the atmosphere is illuminated 
from the bottom; in other words, it corresponds to a reversed order of atmospheric layers7. This 
solution provides azimuthal harmonics of the Green’s function in the multiple scattering. Because 
aerosol scattering may cause the Green’s function to be very asymmetric in the aureole region, the 
harmonics of the single-scattering term are calculated separately using the high-order gaussian 
quadrature for azimuthal angle (NSS=129). With this separation, a relatively low order of MSH 
(nb=24-36) can be used in the multiple scattering calculations. This approach reduces the overall 
computing time and preserves the total accuracy. Eqs. (11-a, -e, -g) show that the integration in 
azimuth is performed very efficiently by summation of the azimuthal Fourier series. The zenith angle 
integration uses Gaussian quadrature of the order Nq=nb/2+10. Because Legendre polynomial of the 
order 2N is integrated exactly with the quadrature of the order N, and the kernels gof , vf  can be 
approximated by the low order polynomials, the quadrature Nq warrants accurate integration. 
 
3. Parameterization of Atmospheric OTF 

Until recently, computing OTF for given atmospheric conditions consumed most of the time 
required by SHARM-3D algorithm. In this work, we develop a look-up table (LUT) algorithm that 
allows to compactly store certain pre-calculated functions, and to reconstruct the full OTF from the 
LUT based on the symmetry and scaling properties of OTF. To build an efficient algorithm, we divide 
the atmosphere into two vertical layers with Rayleigh scattering and gaseous absorption. The aerosols 
confined to the bottom layer. 

Let us give a definition of the atmospheric optical transfer function, and derive a formula in 
the first order of scattering in order to establish the required properties of OTF. Below, z-axis starts at 
TOA and aims towards the surface (SHARM convention).  
 
3.1. Single Scattering OTF 

OTF is a spatial Fourier-transform of the atmospheric point-spread function (PSF), and is 
found from the following boundary-value problem10,11,2: 
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Above, α and σ are extinction and scattering coefficients, p is a vector of spatial frequency 

),( yx ppp = , and ν is a projection of vector of direction on the horizontal plane 

)sin1,cos1( 22 ϕµϕµν −−= . In Eq. (13b), 0s  is the direction of source beam illuminating the 
atmosphere from below, and s is view direction. Because OTF is a complex function, it can be 
represented via its amplitude and phase: 
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The first term on the right-hand side of equation (14) explicitly takes into account the phase shift at 
oblique view angles. Let us derive an expression for the single-scattering component of the diffuse 
OTF using the method of successive orders of scattering. Following a similar study12, we represent 
OTF as a sum of direct, single scattered and multiple scattered components: 
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The direct component obeys the problem: 
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and has the following solution: 
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Now one can formulate the problem for the single scattering OTF: 
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Let us denote 
µ
νε ),( p

= = }sincos{ ϕϕθ yx pptg + , and consider a homogeneous atmosphere for 

simplicity. Then the diffuse OTF in the upward direction at TOA, after subtraction of the phase shift, 
is given by: 
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In the singularity point s= 0s , 
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Later we will also need a solution for the two-layer atmosphere, which in the single scattering is a 
sum of contributions from the bottom layer ( Hzz ≤≤1 ), and the top layer ( 10 zz <≤ ): 
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Solution given by Eq. (19a) corresponds to the mono-directional (beam) source of light. The function 
OTFL required by Eq. (6) corresponds to isotropic (Lambert) illumination, and it is obtained by an 
additional integration over the directions of origin: 
 00

)1()1( ),()( dssssL ∫
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3.2 Development of LUT and properties of OTF 
 
 To compute the function OTFL we developed a rigorous algorithm of method of spherical 
harmonics13 (MSH). It solves problem (13) with the low boundary condition 1);( =Ψ sH  (µ<0), 
which follows from Eq. (21). The MSH algorithm works reliably for low and medium spatial 
frequencies, p≤2-10, depending on aerosol stratification in the atmosphere. At higher p, oscillations of 
the complex term degrade convergence of the algorithm. On the other hand, the fraction of the 
multiple scattering in the solution quickly decreases with increase of p.  For this reason, at p>pss=2 we 
calculate OTF in the single scattering with numeric integration of Eq. (21) using the high-order 
Gaussian quadrature to ensure stable results. Analysis of the full solution (Eq. 1) for variety of scenes 
shows that the error due to this approximation is negligible. These results agree with the study12. 

The look-up table of OTFL should be representative of different atmospheric conditions, and 
should factor in the following dimensions: 
1) wavelength, 2) aerosol model, 3) vertical profile of aerosol, 4) aerosol optical thickness, 5) spatial 
frequency and view angles ( xp , yp ; µ, ϕ). To eliminate dependence on wavelength, we split the total 
problem into two sub-problems: i) development of the separate look-up tables for the aerosol and 
molecular atmospheres, and ii) calculation of atmospheric OTFL for the aerosol-molecular mixture. 

First, let us consider the properties of OTFL useful for developing the aerosol LUT.  
a) Dependence on phase function 

Due to integration (Eq. (21)), the diffuse OTFL depends on some integral parameter of phase 
function related to its asymmetry rather than on its specific shape. Below, we will characterize the 
asymmetry with the first Legendre expansion coefficient ( 1x ). 

b) Dependence on single scattering albedo 

 As Eq. (19a) shows, the amplitude )1(A  is proportional to the single scattering albedo, 
ω∝)1(A . Generally, nnA ω∝)( , while phase does not depend on ω. Also, at p=0 the OTFL coincides 

with the 1D atmospheric transmission in the upward direction );();(
0

µωµω µ
τ
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, in other 
words ),(),;0( µωµω dTpA == . The transmission function is routinely computed by code SHARM 
when calculating the path radiance (see sec. 2). This consideration shows that it is sufficient to build 
aerosol LUT for some reference single scattering albedo, ω0. Then the amplitude can be accurately 
found for the single scattering range as: 
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At p=0, the scaling is also exact with
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decreases linearly with spatial frequency, we get the following approximation in parameter ω for the 
intermediate multiple-scattering range: 
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The described interpolation algorithm eliminates the ω-dimension of the aerosol LUT. 

c) Scaling property of OTF 
 A scaling property of OTF eliminates dependence on the aerosol vertical profile. The single 

scattering solution (19a) shows that OTF depends on the product of frequency and height of scattering 
layer pH rather than on parameters p and H separately. This property can be established by analysis of 
Eq. (13) in successive orders of scattering, and can be verified with the multiple scattering MSH 
solution. Thus, the LUT needs to be calculated only for some standard aerosol profile with an 
equivalent height of layer eqH 0  (defined for the multi-layer atmosphere as ∑∑= iii

eq HH σσ / ). 

Then, for the profile with an equivalent height eqH , the OTF can be found by scaling the frequency p 
with the factor of eqeq HH /0 .  

d) Symmetry properties of OTF 
Given atmospheric conditions, the diffuse OTFL at TOA is a function of four parameters ( xp , 

yp , µ, ϕ). The x-, and y- projections of spatial frequency are free parameters of problem (13) varying 
independently in the range [- Nyquistp , + Nyquistp ], which can be very large. This fact alone could make 
the LUT approach unfeasible because of the sheer size of the look-up table. However, the symmetry 
properties of OTFL eliminate one of p-dimensions and permit to store OTF in a very compact form. 

Because the light source at the surface is isotropic, both PSFL and OTFL have a cylindrical 
symmetry11 and are rotationally invariant. This suggests that OTFL has a dimension of three rather 
than four, and  

 
 ),,;( ϕµ yxL ppΨ = );0,;( 11 ϕµ pLΨ , (23a) 
where the new coordinates are related by rotational transformation: 
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So, given the view zenith angle, function ),,;( ϕµ yxL ppΨ  can be reconstructed from );;( 11 ϕµ pLΨ  
if it were calculated for different spatial frequencies and all possible azimuths (p1, ϕ1) defined by 
condition (23b).  

Yet another symmetry property of the function );;( 11 ϕµ pLΨ :  
 );;();;();;( 111111 ϕπµϕµϕµ −=−= pApApA , 
 );;();;();;( 111111 ϕπµϕµϕµ −Φ−=−Φ=Φ ppp , (24) 
reduces the range of required azimuthal angles ϕ1 to [0, π/2]. Our numerical MSH calculations show 
that azimuthal dependence of function );;( 11 ϕµ pLΨ  is very smooth and relatively weak. This 
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suggests that );;( 11 ϕµ pLΨ  can be found for an arbitrary angle ϕ1 by linear interpolation over a 
relatively sparse grid from the range [0, π/2].  

The described properties reduce the size of the aerosol LUT of OTFL to 5 dimensions: { 1x , τ , 
p1, µ , 1ϕ }. We calculated the final aerosol LUT with 0ω =1 and eqH 0 =1.5 km for the following grids 
of parameters: 11 values of the asymmetry parameter, 1x ={1.2, 1.3, …, 2.2} that cover the typical 
range of natural variability of aerosol phase function; 18 equidistant values of aerosol optical 
thickness, aτ ={0.05, 0.1, …, 0.85, 0.9}; 40 values of spatial frequency, p1={0, …, 150}. Our 
calculations show that spatial frequencies beyond this range contribute less than ∼10-3-10-4 of the 

variation ),;(~
0 ssrLd

s , and pNyquist= 03.0
π

≅105 is sufficient for calculations with the Landsat spatial 

resolution of 30 m. The LUT is calculated for 8 view zenith angles, µ={-0.3, -0.4, …, -1} and 10 

azimuths ϕ1 =
180
π {0o, 10o, …, 90o}. The amplitude and phase of OTF are stored to four significant 

digits as scaled integers in the binary format. With these arrangements, the size of the LUT is 3.9 Mb. 
The LUT navigation algorithm chooses the nearest value of the asymmetry parameter 1x , and 

uses linear interpolation in τ and µ  for all p1 and 1ϕ . Then, it rescales spatial frequency to adjust the 
height of aerosol layer. These steps prepare the aerosol OTF );;( 11 ϕµ pa

LΨ  for the specified view 
zenith angle and aerosol parameters, except single scattering albedo, which is adjusted on the next 
step. 

  
3.3 Calculation of OTF for the Aerosol-Molecular Mixture 

The common practice of radiative transfer is to handle the scattering by different atmospheric 
components, such as aerosols and air molecules, by linearly mixing their optical properties according 

to respective fractional contributions, 
τ
τ a

af = , 
τ
τ m

mf = : 

 ma τττ += , mmaa ff ωωω += , ωγχωγχωγχ /))()(()( mmmaaa ff += . (25)  
The radiative transfer problem is then solved with the average properties. As we showed above, for 
the medium-to-high frequencies p, the OTF is accurately represented by its single scattering 
component. The linear mixing method (LMM) was shown to be exact in such conditions for the TOA 
path radiance14, 
 )()()( τττ mmaa DfDfD += , (26) 
because )()()( γχωτγχωτγτωχ mmmaaa += . The key detail of LMM is to mix the path radiance 
components calculated for the same optical thickness τ. A simple analysis of the single scattering 
solution for OTF (Eq. 19a) shows that LMM would have worked in our case if the vertical profiles of 
aerosols and molecules (air density) were the same. It is known, however, that the equivalent heights 
of the aerosol and molecular atmospheres are very different, 0.5-2 km vs ≈8 km, respectively. In order 
to use linear mixing, we represent the atmosphere by two layers with aerosols at the bottom. Then, 
LMM can be applied to the bottom layer,  
 ),(),(),( 111 HzZfHzZfHzZ mmaa += . (27) 
After that, OTF at TOA is found by adding the molecular contribution of the top layer (Eq. 20).  
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To implement this approach, we calculated two more LUTs OTFL for the top and bottom 
layers of the molecular atmosphere, ),0( 1zZ m  and ),( 1 HzZ m , where z1=1.5 km to agree with the 
aerosol LUT. Thus, the molecular LUTs have four dimensions, {τ , p1, µ , 1ϕ }. The implemented τ-
grid serves the range of wavelengths from 0.4 µm and higher. 
 As a summary, the LUT mixing algorithm performs the following operations:  
- finds Rayleigh OTF for two layers, ),( 1 HzZ m  and ),0( 1zZ m , where z1 is defined from the height of 
aerosol layer, H- eq

aH = z1; 
- adjust the single scattering albedo of aerosol aω  for the bottom layer (Eqs. 22); 
- mixes molecular and aerosol contributions for the bottom layers (Eq. 27); 
- calculates atmospheric OTFL at TOA by adding contribution of the top molecular layer (Eq. 20). 
Finally, the function ),,;( ϕµ yxL ppΨ  is reconstructed from ),;( 11 ϕµ pLΨ  based on Eqs. (23-24). 
 
4. Discussion 

With introduced parameterizations we achieve a very high efficiency of the algorithm when 
any further improvements can only be of an incremental nature. With the intermediate functions (Eqs. 
(9-11)) calculated once, computing the second and third terms of Eq. (1) requires only several 
additive/multiplicative operations per pixel. The variational term of Eq. (1) requires two 2D Fourier 
transforms: the first (direct) transform calculates spatial spectrum of variation of surface albedo, and 
the second (inverse) transform restores the spatial variation of the TOA radiance. These operations 
are efficiently performed with the FFT algorithm16 that takes NN 2log  operations for the image with 
N2 pixels. The selected Fourier-transform approach based on OTF is more efficient than the approach 
with spatial integration of the atmospheric PSF that requires ~N2 operations. In summary, for small 
images the computing time is entirely defined by the 1D radiative transfer calculations of code 
SHARM. For the large images, the overall time is affected by calculation of the last variational term 
of Eq. (1). 

In order to realistically model reflectance of inland rivers and lakes, especially in the glint 
area, we are also using the BRF model of Nakajima and Tanaka.  The wind speed is assumed constant 
across the image. One can also specify the variable Lambertian offset for the water pixels for an 
approximate modeling reflectance of suspended matter or reflectance from the shallow bottom.     

 
A discussion on the accuracy of 1D code SHARM15, for example choice of parameter nb, 

applies to code SHARM-3D only in regard to the 1D radiative transfer calculations. The overall 
accuracy of this code (~1%) is largely defined by the parameterizations used.  

Because it neglects the non-linear interactions in variation of surface reflectance, code 
SHARM-3D should not be used at resolutions or scales of inhomogeneity typical of establishing the 
1D radiative transfer regime, e.g. 3-5 km. In these conditions, SHARM-3D produces systematic 
biases for pixels that are brighter or darker than the average. The magnitude of biases, which tend to 
reduce the contrast of calculated radiance, may reach several percent. This is easy to demonstrate on 
an example of Lambertian surface. Over the large homogeneous areas of the image, the multiple 
reflections from the surface enhance the surface-reflected radiance proportionally to the albedo of this 
particular area, 1

0 )1( −− cqarea . At the same time, our linearized solution (Eq. (1)) calculates this 
enhancement as proportional to the albedo averaged over the whole image, 1

0 )1( −− cq , which leads to 
the mentioned biases. 
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 To allow the user make calculations in 1D regime, we implemented an independent pixel 
approximation (IPA) as a separate mode of calculations. The mode is specified in the surface 
properties file (*.sfc) by parameter szDimRT, which can take a value of either “1D” or “3D”. The 
algorithm behind IPA is a rigorous 1D Green’s function method6 which has the same accuracy as 
code SHARM, but becomes progressively faster with the increase of the image size. The IPA 
algorithm does not use parameterizations. Instead, it achieves a rigorous convergence for the series of 
multiple reflections for each surface pixel. For this reason, the “1D” mode is considerably slower than 
“3D” mode. Table 1 illustrates the relative speed of 3D solution vs IPA (1D) solutions of code 
SHARM-3D and of 1D code SHARM for the images of different size. 

As a brief summary, let us list the main features of code SHARM-3D. This code was 
developed for fast and accurate simulations of the monochromatic radiance at the top of the 
atmosphere over spatially variable surfaces with Lambertian or anisotropic reflectance. The code also 
calculates the distribution of surface albedo corresponding to given SZA, atmospheric conditions, and 
BRF distribution. The surface boundary condition is periodic. The atmosphere is laterally uniform, 
and consists of two vertical slabs with aerosols in the bottom layer. Code SHARM-3D performs 
simultaneous calculations for all specified incidence-view geometries, and multiple wavelengths in 
one run. The range of view zenith angles is presently limited by the maximal value of µ=-0.3 in look-
up table of pre-computed OTFL (θ≤72.5o). Also, the maximal LUT value of total optical thickness of 
atmosphere is 0.9. If τ>0.9, we assume that OTFL(τ)=OTFL(0.9). This assumption has little impact on 
the accuracy of radiance calculations because i) all other terms are calculated accurately, ii) the path 
radiance dominates the total TOA radiance at high optical thickness, and iii) the relative contribution 
of the variational term ),;(~

0 ssrLd
s  decreases with τ proportionally to the decrease of the surface 

irradiance. 
 The details on the input parameters are provided in the document “SHARM Manual”. 
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N 32 64 128 256 512 1024 

3D/SHARM 2.8 3.2 4.5 10.0 37.1 143.3 

IPA/SHARM 6.2 16.8 59.1 227.6 902.9 3605 

 
Table 1. Relative efficiency of code SHARM-3D in 3D and IPA modes. 
The second and third rows show the ratio of computing time of code SHARM-3D in 3D and IPA 
modes to the time of a single-pixel solution of 1D code SHARM, for the images of different size.  
The top row gives the linear dimension of an image (the image size is N2). The calculations were 
performed for anisotropic surface, medium opacity atmosphere, and off-nadir view geometry 
(SZA=60o, µ=-0.7, ϕ=0). The reference time of a SHARM solution on PC DELL Precision 650 was 
0.078 sec. 
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